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Abstract

As organizations gravitate to group-based structures, the problem of improving performance through
judicious selection of group members has preoccupied scientists and managers alike. However, which
individual attributes best predict group performance remains poorly understood. Here, we describe a
preregistered experiment in which we simultaneously manipulated four widely studied attributes of
group compositions: skill level, skill diversity, social perceptiveness, and cognitive style diversity. We
find that while the average skill level of group members, skill diversity, and social perceptiveness are
significant predictors of group performance, skill level dominates all other factors combined. Addi-
tionally, we explore the relationship between patterns of collaborative behavior and performance out-
comes and find that any potential gains in solution quality from additional communication between the
group members are outweighed by the overhead time cost, leading to lower overall efficiency. How-
ever, groups exhibiting more “turn-taking” behavior are considerably faster and thus more efficient.
Finally, contrary to our expectation, we find that group compositional factors (i.e., skill level and social
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perceptiveness) are not associated with the amount of communication between group members nor
turn-taking dynamics.

Keywords: Collective performance; Group composition; Collective intelligence; Virtual labs

1. Introduction

Problem-solving in groups is ubiquitous throughout the economy and society. Busi-
ness firms have long been highly reliant on teams for functions as diverse as engineer-
ing, design, and marketing, but other domains, including science, are also increasingly
group-based (Wuchty, Jones, & Uzzi, 2007). Naturally, questions about how to most effec-
tively construct and manage groups have also preoccupied researchers across a variety of
fields, including psychology, economics, management science, and, more recently, complex-
ity science (Bahrami et al., 2010; Jones, Wuchty, & Uzzi, 2008; Mukherjee, Huang, Neid-
hardt, Uzzi, & Contractor, 2019); (Woolley, Chabris, Pentland, Hashmi, & Malone, 2010);
(Wu, Wang, & Evans, 2019; Wuchty et al., 2007).

In spite of this attention, research on the performance of groups of problem-solvers has
often reached inconsistent or conflicting conclusions. One such area of disagreement per-
tains to the effects of different group compositions on group performance. For example, sev-
eral lab studies found that average ability was the most consistent predictor of group perfor-
mance (Bell, 2007; Devine & Philips, 2001; Laughlin & Adamopoulos, 1980; LePine, 2003);
(Riedl, Kim, Gupta, Malone, & Woolley, 2021; Stewart, 2006). Other studies, however, have
argued the opposite: that average ability is less relevant to group performance than factors
such as social perceptiveness (aka emotional intelligence) (Engel, Woolley, Jing, Chabris, &
Malone, 2014; Kim et al., 2017; Lillis, 2007); (Woolley et al., 2010), skill diversity (Hong
& Page, 2004; Page, 2008), and cognitive style diversity (AlShebli, Rahwan, & Woon, 2018;
Aggarwal & Woolley, 2019; Bendor & Page, 2019; Ellemers & Rink, 2016).

Motivated by these seemingly conflicting results, we advocate moving from a traditional
“explanatory” framework, in which one seeks to test the sign and statistical significance of a
single factor of theoretical interest, to a “predictive” framework, in which one instead seeks
to minimize out-of-sample prediction error on some outcome of interest using all available
features (Hofman et al., 2021a, 2021b; Watts, 2017; Yarkoni & Westfall, 2017).

Concretely, imagine starting with certain information about a sample of potential group
members that includes, for example, their previously demonstrated skill on a related task,
their social perceptiveness, and their cognitive style. Armed with these “features,” the predic-
tion approach argues for constructing a model with which one then makes predictions about
which combination of features will yield the best performance for the group as a whole. Pre-
vious theoretical and empirical findings suggest that any of these features, when considered
in isolation, should be somewhat predictive of the outcome of interest; however, they offer
little guidance on two questions of central relevance to the prediction problem. First, because
different features are emphasized in different studies, it is difficult to quantify the relative
importance and predictive power of different features: for example, does average skill account
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for more or less variance than social perceptiveness or skill diversity, and if so, by how much?
Second, because the traditional method for establishing a causal effect of a given feature is to
reject the null hypothesis that the effect size is zero, it is difficult to know how much variance
of the outcome of interest (group performance) can be explained at all by any combination
of features (Lo, Chernoff, Zheng, & Lo, 2015; Ward, Greenhill, & Bakke, 2010). In other
words, whereas previous work has focused on demonstrating the existence of specific, the-
oretically motivated effects, we are concerned with comparing the relative importance and
out-of-sample predictive power of multiple effects, all of which may influence performance
either individually or collectively. Finally, because the relative importance and even direction
of all these effects may depend on the details of the task instance in question, the predictive
“model” must also be evaluated over the relevant variations in the task class (Almaatouq,
Alsobay, Yin, & Watts, 2021; Yarkoni, 2020).

Motivated by this predictive framework, we conducted a novel “two-phase” experiment to
answer two main questions (preregistered at AsPredicted.org #13123): (1) Which of several
competing group compositions dominate group performance in a problem-solving task? (2)
Are these results robust to variations in the task parameters? In phase 1, we measured sev-
eral relevant attributes for individual workers (i.e., skill, social perceptiveness, and cognitive
style); then, in phase 2, we used this information to construct groups with desired combina-
tions of individual attributes (i.e., group-level skill, skill diversity, group-level social percep-
tiveness, and cognitive style diversity). Our approach differs from previous work in several
respects:

1. We manipulated four widely studied attributes of groups simultaneously, allowing us
to quantify the relative importance of these attributes both individually and collec-
tively. We emphasize that, by design, we only compared effects that had previously
been claimed to be important in explaining group outcomes. In other words, the inten-
tion of our study was not to identify novel effects but rather to evaluate the relative and
cumulative importance of previously identified effects.

2. In contrast with many previous studies that have used generic measures of skill
(e.g., general cognitive ability) and cognitive style (Blazhenkova & Kozhevnikov,
2009), we directly measured individual skill and problem-solving style (i.e., cognitive
style) on the task in question before assignment to groups. Although generic measures
have some advantages in generalizing to multiple tasks, our purpose was to explain as
much variance as possible for the task in question; thus, we wanted to tie our classifi-
cation of individual workers as closely as possible to the task.

3. In contrast with previous studies that establish effects on performance indirectly
(e.g., null-hypothesis testing, factor analysis, collective intelligence factor, etc.), we
evaluated relative importance directly in terms of the features’ ability to predict the
outcome of interest in an out-of-sample manner. We emphasize that out-of-sample
predictive performance is a much stronger test of a feature’s importance than showing
that it is correlated with performance or rejecting the null hypothesis that it has no
effect at all (Hofman et al., 2021b; Yarkoni & Westfall, 2017).
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4. By systematically varying the task’s complexity over a wide range (from “very low”
to “very high” complexity) without changing the nature of the task, we determined
how, or if, the relative importance of different attributes is robust to changes in task
complexity (e.g., does social perceptiveness, or skill diversity, matter more for the
most complex tasks than for simple tasks?).

5. We used a block randomization scheme that intentionally oversampled infrequent
combinations of individuals (e.g., “all high skill and high social perceptiveness”),
thereby greatly increasing our statistical power.

6. We preregistered our research questions and analysis plan, thereby increasing the repli-
cability of our findings (Simmons, Nelson, & Simonsohn, 2011). See Section S1 in the
Supporting Information of Almaatouq et al. (2021) for exceptions to the preregistration
plan.

2. Experiment design

We tackle our two questions in a two-phase web-based experiment implemented using
the Empirica virtual laboratory platform (Almaatouq et al., 2021). We note that our focus in
this paper is on compositional differences between interacting groups, not on the comparison
between nominal groups and interacting groups.1

2.1. Room assignment task

The main task in question was a “room assignment” problem in which participants—first
as individuals and then in groups—were required to assign N “students” to M “rooms” where
each student had a specified utility for each room. The objective was to maximize total student
utility while also respecting Q constraints (e.g., “Students A and B may not share a room or be
in adjacent rooms”; see Figs. S1 and S2 for screenshots of the experiment; see Section S2.1
for more details about the task). In phase 2, participants were allowed to communicate via
text-based chat and move different “students” simultaneously; therefore, they could perform
parallel processing, but they were blocked from moving the same student at the same time
(i.e., to avoid generating both human confusion and software errors).

We chose the room assignment task for three reasons, similar to those presented in prior
research that leveraged this task to study group performance (Almaatouq et al., 2021). First,
it is a specific instance of a more general class of complex problems known as “constraint
satisfaction and optimization problems” (CSOPs), which are widely studied in artificial intel-
ligence and operations research (Tsang, 2014); thus, our findings will inform collective solu-
tions of CSOPs in general (Almaatouq et al., 2021). Second, as with other complex prob-
lems, the payoff function for CSOPs can be described as a “rugged landscape” characterized
by many locally optimal but globally suboptimal solutions (Baumann, Schmidt, & Stieglitz,

1 Our analysis of the conditions under which groups of interacting problem-solvers outperform autonomous
individuals is published in Almaatouq et al. (2021)—as per our preregistration.
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2019; Shirado & Christakis, 2017; Shore, Bernstein, & Lazer, 2015; Yahosseini & Mous-
saïd, 2019). Correspondingly, CSOPs are amenable to potentially many solution strategies
and cognitive styles, where no single strategy is universally superior (Wolpert & Macready,
1997). Third, the complexity of CSOPs can be systematically varied by adjusting a few key
parameters—in our case, by changing the numbers of students (N), rooms (M), and con-
straints (Q). The analyses in Section S4 demonstrate that the manipulation of task complexity
was effective, and led to increased “experienced” complexity (Almaatouq et al., 2021; Liu
& Li, 2012). More details about the room assignment task can be found in Almaatouq et al.
(2021).

2.2. Phase 1 of the experiment

In phase 1, 1200 participants recruited from Amazon’s Mechanical Turk completed five
room-assignment tasks with varying complexity levels, as well as a standard “Reading the
Mind in the Eyes” (RME) test (Baron-Cohen, Wheelwright, Hill, Raste, & Plumb, 2001),
which is commonly used as a measure of social perceptiveness (see Sections S2.2 and S2.3
for more details).

In the RME test, participants were shown 36 pairs of eyes, where for each pair of eyes
they had to choose one of four words describing the corresponding emotion (see Fig. S3 for
screenshots of the task). This test was used by a number of recent studies relating social
perceptiveness to group performance (Kim et al., 2017; Lillis, 2007; Riedl et al., 2021; Weid-
mann & Deming, 2021; Woolley et al., 2010), and it has been shown to be equally predictive
of group performance for both face-to-face groups (interacting freely in a room) and online
virtual groups interacting via text-based chat (i.e., they cannot see each other’s eyes or facial
expressions at all) (Engel et al., 2014; Kim et al., 2017). These findings support that the RME
test captures a deeper, domain-independent aspect of social reasoning, not merely the abil-
ity to recognize facial expressions of mental states. For instance, one hypothesis is that what
makes socially perceptive individuals better group performers is their superior ability to cali-
brate the weight they assign to one another during discussions (Moussaïd, Noriega Campero,
& Almaatouq, 2018). After the completion of phase 1, we evaluated all participants on skill
level, social perceptiveness, and cognitive style (see Section S2.4.2 for phase 1 details).

2.2.1. Skill
Our primary definition of skill was the sum of scores on the two moderately complex

room-assignment tasks (for more details and robustness checks, see Almaatouq et al., 2021).
The score a participant earned in a room assignment task considers both the total utility of
students based on their room assignments and penalties arising from constraint violations
(see Sections S2.1 and S2.4.3 for details). Individuals who scored above/below the median
skill score were classified as high/low skill, respectively. Note that the task order was not
randomized in phase 1 to eliminate noise in measuring individual skill level (e.g., to control
for learning effects).
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2.2.2. Social perceptiveness
We defined social perceptiveness simply as the number of RME questions correctly

answered. As with skill, individuals above/below the median social perceptiveness score were
classified as high/low social perceptiveness, respectively. Our sample was similar in mean and
variability on this test to the original general population sample in Baron-Cohen et al. (ours:
M=27.6; SD = 4.3; N=1200; original student population: M=28.0; SD = 3.5; N=103; orig-
inal general population: M=26.2; SD=3.6; N=122).

2.2.3. Cognitive style
Finally, based on the participants’ answers to a post-experiment survey question, we

defined an individual’s cognitive style as belonging to one of two categories: “optimizer,”
who indicated a preference for allocating all students to rooms for which they had the high-
est utility before attempting to resolve conflicts; and “resolver,” who indicated a preference to
first allocate all students with conflicts before moving students to higher-value rooms. Groups
are then labeled as either homogeneous or diverse with respect to cognitive style by checking
whether the three group members in the group belong to the same type (“homogeneous”) or
not (“diverse”). Our definition of cognitive style proceeds from three criteria (Aggarwal &
Woolley, 2019): it must be persistent for a given individual (i.e., consistent across tasks); it
must be heterogeneous across the sample (ideally, roughly equal numbers would have each
style); it must not be highly correlated with skill (see Section S5 for more details and alter-
native definitions). Our specific measure of cognitive style (“optimizer” vs. “resolver”) had
an average test-retest reliability of 0.74 (see Supporting Information, page 19), which falls
within the recommended range of 0.7–0.9 (Davidshofer & Murphy, 2005). The other mea-
sures of cognitive style that we reported in the Supplementary Materials also show consider-
able test-retest reliability (0.74 for constraint violation tolerance, and 0.71 for preference for
efficiency vs. perfection). These survey measures of cognitive style are not only reliable, but
also appear to be valid representations of the underlying behavior as measured in phase 1,
as the survey answers are strongly correlated with the relevant behaviors during the task (see
Section S5 for details).

2.3. Phase 2 of the experiment

In phase 2, we recruited the same 1200 participants and allowed 828 of them (as per our
preregistration; see Section S1 for sample sizes) to perform a second sequence of five room-
assignment tasks (task sequence is randomized) distinct from those completed in phase 1,
also of varying complexity (very low, low, moderate, high, very high; all tasks timed out at
10 min in phase 2, regardless of complexity). Based on each participant’s phase 1 labels for
skill and social perceptiveness (participants were labeled as “high” skill or social perceptive-
ness if their level exceeded the median, and “low” otherwise), we first assigned each individ-
ual into one of the six blocks: HH (all individuals in this block are classified as high skill and
high social perceptiveness, N = 100); MH (contains a mixture of high/low skill individuals
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with high social perceptiveness, N = 213); LH (all individuals in this block are classified as
low skill and high social perceptiveness, N = 90); HL (all individuals in this block are classi-
fied as high skill and low social perceptiveness, N = 97); ML (contains a mixture of high/low
skill individuals with low social perceptiveness, N = 221); and LL (all individuals in this
block are classified as low skill and low social perceptiveness, N = 107). Next, within each
block, individuals were randomized to one of two conditions: “group,” in which groups of
three randomly selected individuals from the same block were assigned to solve the problem
collectively and had the ability to communicate with each other via text-based chat (N = 591
participants, forming 197 groups of size 3; data for one group are incomplete, leading to the
number of valid interacting groups being 196); and “individual,” in which individual partic-
ipants solved the problem independently and without communication with others (N = 237
participants; data from three individuals are incomplete, leading to the number of valid inde-
pendent individuals being 234). As noted above, in previous work (Almaatouq et al., 2021),
we compared the performance of groups with individuals for different levels of complexity.
In contrast, our focus here is exclusively on the effects of compositional differences between
interacting groups, hence our analysis only utilizes data from the group condition (see Fig. 1
for overall experimental design; Section S2.4.4 for details on experiment phase 2 design). The
main purpose of the block randomization scheme was to oversample statistically less frequent
combinations (e.g., all group members had high skills or high social perceptiveness), thereby
increasing the statistical power of our experiments; within mixed skill blocks (MH and ML),
we rely on the natural variance of skill diversity arising from simple random selection within
the block. A secondary benefit of the block randomization approach was that it allowed us to
match the distributions of participant skill and social perceptiveness levels in phases 1 and 2
(see Section S2.4.5). Although the median was used to label participants as having high/low
skill and social perceptiveness for the sake of block randomization, all analyses use the con-
tinuous values of these metrics.

2.4. Performance evaluation

In phase 2, we used three metrics to capture performance in a room assignment task
instance: (1) normalized score, defined as the actual score obtained in a task instance divided
by the maximum possible score for that task; (2) duration (or time to completion), defined
as the time elapsed from the start of the task until a solution was submitted (or until the task
times out at 10 min); and finally, (3) efficiency, defined as the normalized score divided by
the duration.

All three metrics are natural performance indicators that one might wish to optimize under
some circumstances. In the absence of time constraints, for example, normalized score is an
obvious measure of solution quality. By contrast, duration is appropriate when the problem-
solving time is more important than quality (e.g., quickly come up with a reasonably good
plan for resource allocation in a disaster response), and efficiency is appropriate when both
quality and speed are important (e.g., in product development).
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Fig. 1. Schematic illustration of the study design. In phase 1, participants completed a sequence of the “room
assignment” task and a standard “Reading the Mind in the Eyes” (RME) test. In phase 2, the same participants
were assigned to blocks based on skill and social perceptiveness (variation in cognitive style diversity arises only
through randomization within blocks), then randomized into “individual” or “group” conditions within blocks
before performing the second sequence of five room-assignment tasks.

3. Results

3.1. The effect of group composition on performance

Fig. 2 shows the absolute and relative effects of all preregistered independent variables on
group performance, quantified as normalized score (Fig. 2a), duration of completion (Fig. 2b),
and efficiency (Fig. 2c). All three metrics are standardized within each task instance as per
our preregistration2 (see Section S1).

Averaging across all complexities, Fig. 2a shows that higher levels of average skill, skill
diversity, and social perceptiveness—but not cognitive style diversity—were associated with

2 In a deviation from our preregistration, cognitive style diversity is not standardized and is kept as a binary vari-
able for ease of interpretation; this choice does not change any of the qualitative conclusions presented here.
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Fig. 2. Group composition and group performance. Standardized regression coefficients (OLS within each
complexity, mixed effects model for “overall,” which combines data across complexities) for skill, social per-
ceptiveness, skill diversity, and cognitive style diversity as a function of task complexity when predicting (a)
normalized score, (b) duration, and (c) efficiency. Error bars indicate 95% confidence intervals. Group perfor-
mance is standardized within each complexity, while group composition factors are standardized across groups;
cognitive style diversity is kept binary. See Section S6 for regression description and tables.

significantly higher group scores (p < .001 and 95% CI [0.268, 0.530], p = .017 and 95% CI
[0.029, 0.287], p = .001 and 95% CI [0.054, 0.210], respectively). Meanwhile, Figs. 2b and c
show that, after accounting for multiple comparisons, we are unable to detect a statistically
significant effect of any of the four group composition factors on task duration or efficiency,
respectively (for regression tables, see Section S6). The observation that average individual
skill, social perceptiveness, and skill diversity all have positive and significant effects on nor-
malized score is consistent with both the meta-analytical studies that emphasized ability (Bell,
2007; Devine & Philips, 2001; Riedl et al., 2021; Stewart, 2006) as well as the experiments
that highlighted the role of social perceptiveness (Engel et al., 2014; Kim et al., 2017; Lillis,
2007; Woolley et al., 2010) and the analytical models that played-up skill diversity (Hong
& Page, 2004). The absence of a significant effect for cognitive style diversity is surprising
inasmuch as the performance benefits of diversity are believed to derive specifically from a
group’s collective ability to think about a problem in qualitatively different ways, a mecha-
nism that is often implied in discussions of diversity (Bendor & Page, 2019; Hong & Page,
2004) even if it is not explicitly represented this way in the underlying formal models.

The absence of any significant effect of group composition on task duration is also nonob-
vious. One might have expected, for example, that more highly skilled groups would perform
both better and faster, but if anything Fig. 2b suggests that higher skill is associated with
slower task completion, where interestingly this effect seems to dominate the correspond-
ing gain in score when computing efficiency. Likewise, one might have expected that higher
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social perceptiveness would lead to better coordination and hence speed. In this case, the point
estimate is consistent with intuition but the true effect, even if nonzero, is likely small.

Focusing again on normalized score (Fig. 2a), we take advantage of our novel design, in
which all group composition factors were varied simultaneously, to compare the relative mag-
nitudes of the three statistically significant effects. Strikingly, we find that the average effect
of skill on normalized score is more than twice as large as that of skill diversity (Wald chi-
square test; χ2 = 32.23, p < .001) and three times as large as that of social perceptiveness
(χ2 = 10.33, p = .0013).3 Differences of this magnitude offer important context for recent
accounts of non-skill-based factors such as diversity and social perceptiveness. For example,
while it may be accurate to say that social perceptiveness exerts a significant and potentially
even large effect on team performance, it does not necessarily follow that the optimal strategy
for a manager is to focus on identifying “team players” versus simply hiring the most skilled
workers. If anything, the three-fold difference in effect of average skill vis-à-vis social percep-
tiveness suggests the opposite; this in-sample estimate of relative importance is in directional
agreement with previous studies focusing on the relative contribution of team composition
factors (Weidmann & Deming, 2021).

Unfortunately, while standardized regression coefficients are helpful for comparing effect
sizes, they are not well suited to making this sort of comparison; thus, we now reframe the
problem in terms of predictive accuracy (Hofman et al., 2021a; Hofman, Sharma, & Watts,
2017; Rocca & Yarkoni, 2021; Salganik et al., 2020; Yarkoni & Westfall, 2017). To illus-
trate, imagine a hypothetical manager who wishes to compose a group for some task and who
has prior information about the skill, cognitive style, and social perceptiveness of prospective
group members. In essence, the manager’s task is to predict the group performance of different
combinations of individual traits. Specifically, the manager cares about two related questions.
First, what is the predictive accuracy of her “model” (i.e., how much of the observed variance
can be accounted for by all independent variables in combination)? Second, what fraction of
overall predictive performance is accounted for by each independent variable? The answer to
the first question quantifies the extent to which group performance depends on the observed
individual traits (vs. unobserved traits, factors external to the individuals, random noise, etc.),
and hence to what extent it can be “engineered” at all. The answer to the second indicates
which of the observed variables to prioritize when selecting group members, which is partic-
ularly important when there is a cost associated with measuring the relevant variables.

Addressing the first question regarding the degree to which group performance depends
on the observed individual traits: With a simple list of covariates discussed in the litera-
ture, a linear regression achieved a Q2 (a measure of goodness of prediction) of 0.24, mean-
ing that the model “explained” about 24% of the out-of-sample observed variance in group
performance—other models performed similarly (Joreskog & Wold, 1982; Quan, 1988).
Using a longer list of task-specific covariates measured in phase 1 (including demographics

3 We note that because our task has bounds on the score a group can achieve, group-level average skill and skill
diversity are highly correlated: as the group’s average skill approaches the maximum, so must the members’
individual skill levels. Consequently, we have reduced power in detecting the effect of these group composi-
tion factors.
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A. Almaatouq et al. / Topics in Cognitive Science 00 (2023) 11

Fig. 3. Out-of-sample (OOS) prediction of phase 2 performance using a range of models. Using 19 features
capturing the demographics, cognitive style, and performance of group members as measured in phase 1, we
conduct a search over 100 models of varying structure and parameters using an “automatic machine learning”
framework to predict the group’s phase 2 score. The figure shows the distribution of the Q2 (a measure of out-
of-sample predictive power) achieved by the models. The highest-performing model achieves a Q2 of 0.45, while
the average Q2 across all models is 0.36 (indicated by the dotted vertical line). See Section S7 for details of the
variables and model search procedure.

such as gender and age, behavioral measures of cognitive style, alternative definitions of sur-
veyed cognitive style, and phase 1 task performance), an automated search over 100 models
of varying structure (e.g., generalized linear models, gradient boosted trees, and ensembles
thereof) and parameters, as described in LeDell and Poirier (2020), yields a model configura-
tion that reaches a Q2 of 0.45 when predicting the group’s score in phase 2, with the distribu-
tion of model performance centered around Q2 of 0.36 (see Fig. 3; see Section S7 for details
of the procedure). These figures are similar to those of recent out-of-sample prediction
attempts in the social sciences, such as individual life-course outcomes (0.03 ≤ R2 ≤
.23) (Rigobon et al., 2019; Salganik et al., 2020) and the size of Twitter cascades (R2 �
.4) (Martin, Hofman, Sharma, Anderson, & Watts, 2016). As with these previous studies,
the finding that at least two-thirds of observed variance cannot be explained even by state of
the art models with access to a large number of precisely measured covariates suggests that
group performance is a noisy phenomenon that may be subject to a fundamental “limit to
prediction” (Martin et al., 2016), and hence explanation (Hofman et al., 2017), even for the
relatively simple, controlled case presented here.

To address the second question of the overall predictive performance being accounted for
by each independent variable, we measure the value of a given feature to out-of-sample pre-
diction as its permutation importance (Breiman, 2001). To adapt this procedure to the Q2
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12 A. Almaatouq et al. / Topics in Cognitive Science 00 (2023)

Fig. 4. Out-of-sample permutation feature importance. For each model, a feature’s out-of-sample permutation
importance is measured as the decrease in Q2 caused by randomly shuffling the feature during out-of-sample
evaluation; this decrease is reported relative to the model’s out-of-sample performance on the unshuffled data.
Each feature is shuffled 30 times, and error bars indicate the 95% confidence intervals. See Section S7.2 for a
detailed explanation of the procedure and its application to other models and a broader list of features.

metric, we first fit one model per data point, while withholding that point during training
(i.e., 196 models total), and measure the baseline Q2 using the predictions of these models on
their respective held-out data points. Then, to measure a feature’s importance to out-of-sample
prediction, the feature is randomly shuffled across observations, and the Q2 in predicting this
partially permuted test set is compared to the base performance of the model on the origi-
nal data. The features that lead to the largest decrease in out-of-sample model performance
when permuted are then considered the most important to out-of-sample prediction. In both
the literature-driven and extended sets of features, the average skill level of the group’s mem-
bers consistently emerges as the most important feature—among the features shown in Fig. 4,
average skill is approximately five times as “important” to out-of-sample prediction as skill
diversity is, and nearly 12 times as “important” as social perceptiveness. Returning to our
motivating example, in other words, faced with a choice between recruiting “team players”
(i.e., high social perceptiveness individuals) and high skilled individuals, our hypothetical
manager would be advised to focus almost exclusively on skill. This is not to say, of course,
that for any pool of individuals of a fixed skill level, one would not want to select the best
team players among them. Rather, it is just that when deciding how much effort to devote to
increasing the average skill level of one’s pool versus the average social perceptiveness, the
payoff to the former far outweighs the latter.

3.2. Compositional differences and collaborative behavior

To explore how groups interact to complete the task, we define two measures of collabo-
ration at the group level: the overall number of chat messages sent within the group during
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the game, and the group’s turn-taking index. A group’s turn-taking index for a given round is
measured by dividing the number of turns taken (a turn is an uninterrupted sequence of room
assignments made by a single player, each defining an intermediate solution) by the total
number of solutions generated on a particular task instance. This measure is intended to dif-
ferentiate between groups that collaborate in blocks (e.g., Player 1 moves N times, then Player
2 moves N times, then Player 3 moves N times) and groups that collaborate more dynamically
(e.g., Players 1, 2, and 3 alternate moves, for a total of 3N moves)—in the first example, the
number of turns taken is 3, and in the second example, the number of turns taken is 3N, but
the total number of solutions generated is the same in both cases. Contrary to our expecta-
tion, we find that both skill and social perceptiveness are not meaningfully associated with the
standardized number of chat messages sent across all rounds (Bonferroni-corrected 95% CIs
[–0.187, 0.247] and [–0.161, 0.273], respectively) nor the average standardized turn-taking
index (Bonferroni-corrected 95% CIs [–0.126, 0.204] and [–0.233, 0.096], respectively, see
Section S10). Intuitively, we would expect the conversation to be affected by the group’s
average social perceptiveness; here, it may be that the time constraints imposed by the task
inhibit this mode of socializing and drive the conversation toward more task-related messages,
which may not be mediated by social aptitude. Consequently, while the quantity of messages
is not predicted by a group’s social perceptiveness, the content of the messages could be.
Similarly, while social aptitude may lead group members to give each other opportunities to
participate (thus increasing their turn-taking index), the pressures of a time-sensitive task may
overshadow such a dynamic. This post hoc exploratory analysis highlights the potential sig-
nificance of these behaviors, and the observation that social perceptiveness is not associated
with these behaviors in our data warrants a more focused study of these mechanisms.

3.3. Collaborative group behavior and performance outcomes

In this exploratory (i.e., not preregistered) analysis, we probe the relationship between pat-
terns of collaborative group behavior and performance outcomes. As illustrated in Fig. 5, we
find that any potential gains in score from additional communication across task instances are
outweighed by the overhead time cost, leading to lower efficiency averaged across all task
complexities (Bonferroni-corrected p < .001, 95% CI [–0.484, –0.247], see Table S9). While
communication enables groups to coordinate more complex strategies (e.g., division of labor,
see Section S9), these strategies may be less efficient than expected given the complexity and
time constraints involved in the task. Because communication ability was not experimentally
manipulated, this measurement is potentially confounded but serves as suggestive evidence
to motivate more detailed future work on the role of communication in group performance.

We also explore the association between turn-taking behavior and performance, and find
that while turn-taking is not significantly associated with score (Bonferroni-corrected p > .1,
95% CI [–0.086, 0.143]), groups exhibiting more turn-taking behavior are considerably faster
and thus more efficient on average (Bonferroni-corrected p < .001, 95% CI [0.108, 0.301],
see Fig. 5 and Section S8). This efficiency gain may arise from the increased capacity for
“parallel processing”; while one group member acts, another can process the situation and
take action instead of waiting for the first to finish (which would result in a possibly longer
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Fig. 5. Group behavior and collective performance. Standardized regression coefficients (OLS within each
complexity, mixed effects model for “overall” which combines data across complexities) for the number of chat
messages and the turn-taking index as a function of task complexity when predicting group performance. For any
task complexity, groups that chat more do not score higher on average (a), but take longer to complete the task
(b), leading to lower efficiency (c). On the other hand, groups that show more interspersed collaboration (higher
turn-taking index) are faster and, consequently, more efficient on average. Error bars indicate the 95% confidence
intervals with correction for multiple comparisons. See Section S8 for regression tables.

cycle of individual acting and thinking). Given the observational nature of this analysis, more
careful manipulation of collaboration mechanics might be warranted to accurately assess turn-
taking’s role in group performance; for example, future work could control the number of
successive actions a given player may take.

4. Discussion

The successful pursuit of ambitious objectives such as national security, space exploration,
or corporate management necessitates effective teamwork (Mathieu, Hollenbeck, van Knip-
penberg, & Ilgen, 2017; Mathieu, Maynard, Rapp, & Gilson, 2008; Wuchty et al., 2007).
However, understanding team performance is challenging, as group behavior is influenced by
many intricate interplaying processes and components, making it difficult to predict even with
a good understanding of its individual elements. Therefore, we took a multi-level perspec-
tive, considering both the individual and team units of analysis, to investigate how individual
attributes contribute to collective performance.

Our results provide mixed support for previous studies and highlight important build-
ing blocks, such as the two-stage design, block randomization, relative effect size compar-
ison, and out-of-sample predictive performance, from which a research program could be
constructed. For example, only by directly comparing the importance of group composition
factors to out-of-sample prediction do we find that the “importance” of average individual
skill far outweighs that of other factors, such as skill diversity, cognitive style diversity, and
social perceptiveness, that have been emphasized in recent years. Naturally, this is not to say
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that the importance of the average individual skill level will dominate in all contexts. For
instance, access to the true skill level may—at least in many cases—be either unavailable or
prohibitively difficult.

Second, our findings that (a) the effect of skill on collective performance is greater than
that of skill diversity and (b) cognitive style diversity measures are neither positively nor
negatively associated with performance appear to contradict widely cited claims (which are
largely based on a theoretical model, rather than empirical results) regarding the performance
benefits of diversity (Hong & Page, 2004; Page, 2008). Naturally, the lack of reliable diversity
effect might not generalize to all types of tasks. Moreover, groups can be diverse with respect
to attributes other than skill and cognitive style (e.g., demographics, specialized skills, world-
view, etc.), and diversity can affect outcomes other than performance on a task (e.g., satisfac-
tion, legitimacy, social equity, etc.). Thus, our results should not be construed as finding no
effect of diversity in general. Nevertheless, they add to other recent results (de Oliveira & Nis-
bett, 2018; Eagly, 2016; Kurvers et al., 2019; Novaes Tump, Wolf, Krause, & Kurvers, 2018)
that positive performance effects of diversity are surprisingly difficult to detect in carefully
controlled empirical studies, and highlight the need for a research program that systemati-
cally varies task types (along with other contextual factors) while considering a wide range
of group composition factors (and operationalizations thereof) to advance the basic science
of collective problem-solving.

We recognize that these findings do not resolve all of the conflicting results that motivated
this work—at least not in the general sense—and there are many other potential sources that
contribute to the inconsistencies in this literature. For example, some theoretical constructs
can be vague (e.g., what does “cognitive style diversity” mean?) or ambiguous (e.g., how
do you operationalize cognitive style?), potentially causing different studies ostensibly about
the same phenomenon (e.g., the impact of cognitive diversity on collective problem-solving)
to measure quite different things. Another source of inconsistency could be the presence or
absence of other mediating variables (i.e., multiple causes), or the misidentification of causal
effects due to false-positive results (e.g., underpowered experimental designs, misspecified or
faulty computational models) or bias in publications (e.g., incentives to find counterintuitive
results).

We also note that the results of laboratory experiments, including ours, rarely translate
directly into the real world. Obtaining results of immediate practical relevance would require
running a far more extensive and complicated series of experiments than the one we have pre-
sented, one in which we would vary the available time, group size, task type, group interaction
parameters, and many other potentially moderating variables. Nonetheless, our experiment is
more realistic than previous work in one important sense: that when some hypothetical man-
ager is faced with a situation where she must select individuals about whom she has some
prior information to combine into a group, it is effectively out-of-sample predictive perfor-
mance that she is seeking to maximize. In other words, if the problem we have studied did
arise in a real-world context, then the quantity we are measuring, out-of-sample predictive
power, would be exactly the quantity that a hypothetical manager would care about in weigh-
ing the different pieces of information available to her. In this sense, our work exemplifies a
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“solution-oriented” approach (Watts, 2017): by forcing theoretical conjectures to confront the
sort of practical questions that a manager trying to assemble a team might ask, our objective
has been to advance basic understanding of collective problem-solving.

5. Materials and methods

The study was reviewed by the Microsoft Research Ethics Advisory Board and approved
by the Microsoft Research Institutional Review Board (MSRIRB; Approval 0000019). All
participants provided explicit consent to participate in this study, and the MSR IRB approved
the consent procedure. Our experimental design, sample size, and analyses comparing the
performance of groups with different composition were preregistered before the collection of
the data (AsPredicted 13123). All other analyses are exploratory.

5.1. Statistical methods

To measure the effect of group composition factors on group outcomes, the composition
measures (skill level, skill diversity, social perceptiveness, and cognitive style diversity) were
first standardized at the group level, and the outcome measures (score, duration, and effi-
ciency) were standardized within each of the five task complexity levels. The variables were
standardized by subtracting the respective mean (e.g., across groups, or within complexity)
and dividing by the respective standard deviation.

Effects within each complexity were then estimated by multivariate ordinary least squares
regression, with fixed effects for each group composition factor. To estimate the average effect
across task complexities (i.e., by pooling data from all tasks), we use mixed effects regression
with fixed effects for group composition, and random effects at the group level, accounting
for the nested structure of the data. Regressions relating to group behavior are conducted in
the same manner, albeit with fixed effects for the behaviors instead of the group composition
factors. These methods are detailed in Section S6. For exploratory analyses, we address the
problem of multiple comparisons by a Bonferroni correction of the confidence intervals and
p-values to maintain a family-wise error rate of 5%, where the “family” of hypotheses is that
of all exploratory analyses in the study, the number of which is 91 (not all are included in the
report).

Out-of-sample feature importance is measured by applying the permutation importance
method outlined in Breiman (2001) to the Q2 evaluation metric outlined in Joreskog and &
Wold (1982), and Quan (1988) (see Section S7.2 for details of the modified procedure).

5.2. Data and code availability

Replication data and code are available at the Harvard Dataverse, https://doi.org/10.
7910/DVN/T2ZNHE. The experiment was developed using the Empirica platform (Almaa-
touq et al., 2021). The source code for the “room assignment” task can be found at
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https://github.com/amaatouq/room-assignment-csop, and the source code for the “Reading
the Mind in the Eyes” (RME) test can be found at https://github.com/amaatouq/rme-test.
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