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Complexity—defined in terms of the number of components and
the nature of the interdependencies between them—is clearly a
relevant feature of all tasks that groups perform. Yet the role
that task complexity plays in determining group performance
remains poorly understood, in part because no clear language
exists to express complexity in a way that allows for straight-
forward comparisons across tasks. Here we avoid this analytical
difficulty by identifying a class of tasks for which complexity
can be varied systematically while keeping all other elements
of the task unchanged. We then test the effects of task com-
plexity in a preregistered two-phase experiment in which 1,200
individuals were evaluated on a series of tasks of varying com-
plexity (phase 1) and then randomly assigned to solve similar
tasks either in interacting groups or as independent individu-
als (phase 2). We find that interacting groups are as fast as
the fastest individual and more efficient than the most efficient
individual for complex tasks but not for simpler ones. Lever-
aging our highly granular digital data, we define and precisely
measure group process losses and synergistic gains and show
that the balance between the two switches signs at intermedi-
ate values of task complexity. Finally, we find that interacting
groups generate more solutions more rapidly and explore the
solution space more broadly than independent problem solvers,
finding higher-quality solutions than all but the highest-scoring
individuals.

problem-solving | collective intelligence | team performance | complexity

Tasks performed by groups of interacting problem solvers—
whether in the real world or in experimental settings—vary

along a number of dimensions that plausibly influence group per-
formance (1–6). In this paper, we focus on an important but
empirically understudied dimension of tasks, complexity, which
is generally understood to depend on at least two factors: (i)
the number of distinct components that constitute a task and
(ii) the number, strength, and configuration of interdependencies
between those components (7–11).

Intuitively, task complexity is of obvious relevance to group
performance. All else equal, one would expect problem solvers
to perform worse on tasks that have more components or for
which the interactions between components are more dense. In
addition, one might also expect task complexity to impact group
“synergy,” defined as performance in excess of what would be
expected for a similarly sized collection of individuals working
independently—aka “nominal group” (12). In this case, how-
ever, it is less obvious what the direction of the effect would
be. On one hand, interacting groups might perform better rela-
tive to nominal groups on complex tasks because they are able
to distribute effort (13), share information about high-quality
solutions (14), or correct errors (15). On the other hand, with
more complex tasks, interacting groups might experience even
greater process losses—including social loafing (16), groupthink
(17), and interpersonal conflict (4)—possibly because complex
tasks place greater demands on individual contributors and offer
more opportunities to get stuck in globally suboptimal local
optima, either of which could also lead to increased stress and
underperformance relative to nominal groups.

A major challenge to resolving questions about the effects
of task complexity is that while the high-level concept seems
intuitive, it has not yet been operationalized precisely enough
to allow researchers to quantify the complexity of different
types of tasks and hence make apples to apples compar-
isons between them. Rather, existing operationalizations are
often themselves complex. For instance, one model lists 27
complexity contributing factors grouped under 10 complexity
dimensions (9), while other models are sufficiently domain-
specific that numerical differences between different types of
tasks are hard to interpret (7). Adding confusion, some defi-
nitions emphasize objective complexity, referring only to task
features that can be measured independently of those per-
forming a task, whereas others emphasize subjective com-
plexity, the task’s complexity as experienced by those doing
it (9, 11).

Here we avoid these analytical difficulties by identifying a
class of tasks for which complexity can be varied systematically
while keeping all other elements of the task fixed. In this way,
we can easily measure performance as a function of increasing
complexity without worrying about confounds arising from other
aspects of the task such as task type (3) or other features of
group processes (4, 18). In addition, we require that our tasks
can realistically be performed either independently or collabora-
tively, thereby allowing for straightforward comparison between
nominal and interacting groups.

A class of tasks that satisfy these criteria are constraint satis-
faction and optimization problems (CSOPs), which are widely
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studied in artificial intelligence and operations research. The
connection to operations research is useful because unlike
other “toy” problems, CSOPs map in a relatively intuitive
way to a range of practical resource allocation problems and
have been used to model many problems that are of prac-
tical interest. Examples of CSOPs include staffing software
projects where there are several potential developer-to-activity
assignments to evaluate (19); forming learning groups based
on some criteria related to the collaboration goals (20); rail-
way timetabling (21); and allocating vaccines, ventilators, and
medical supplies during the COVID-19 pandemic (22). Further-
more, while CSOPs capture important features of real-world
group problem-solving exercises, they do not require partici-
pants to have specialized skills. As a result, participants can be
recruited from online services, reducing the cost and difficulty
of coordinating simultaneous participation of groups. Finally,
as with other complex problems (14, 23–25), the payoff func-
tion for CSOPs can be described as a rugged performance
landscape, where each point on the landscape represents a com-
bination of potentially interdependent choices (a solution to the
problem), while the height of the point represents the perfor-
mance of that combination (26, 27). Therefore, CSOPs can be
characterized by several locally optimal but globally subopti-
mal solutions (26, 27) and so are amenable to potentially many
solution strategies and styles, with no single universally superior
strategy (28).

The specific CSOP that we studied is a room assignment prob-
lem in which participants—either as individuals or in groups—
assign N students to M rooms where each student has a specified
utility for each room (SI Appendix, section 1.1). The task’s goal
is to maximize the total student utility while also respecting
Q constraints (e.g., “Students A and J may not share a room
or be in adjacent rooms”). When the task is done in groups,
participants are allowed to communicate via text-based chat
and to move different students simultaneously, thereby per-
forming parallel processing if they chose to. Critically for our
purposes, the task complexity can be varied systematically by
adjusting just three key parameters: the number of students
(N ), the number of rooms (M ), and the number of constraints
(Q). Indeed, a significant advantage of this task (and CSOPs in
general) over tasks that are more commonly studied in group
performance settings is that its complexity can be quantified in
terms of the run time required by an algorithmic solver to find
the optimal solution, allowing us to easily rank task instances
by complexity (see Materials and Methods for more details).
Fig. 1 illustrates how complexity can be varied between two
instances of the room assignment problem. In a low-complexity
instance, six students must be assigned to four rooms subject
to only two constraints (“B and E must be neighbors” and
“C and F can’t live in the same room”). In a high-complexity
instance, 18 students must be assigned to 8 rooms subject to
18 constraints.

Fig. 1. Illustration of the room assignment task. The task required assigning N students to M rooms so as to maximize the total utility of the students,
who each have a specified utility for each room, while also respecting Q constraints. The complexity of the task is characterized by the number of students
to be assigned (N), the number of dorm rooms available (M), and the number of constraints (Q). (Top) A low-complexity case in which six students are to
be assigned to four rooms subject to two constraints. (Bottom) A high-complexity case in which 18 students are to be assigned to 8 rooms subject to 18
constraints. See SI Appendix, section S1.1, for details and SI Appendix, Figs. S1–S2, for screenshots of the task interface.
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Experiment Design
In this paper, we test the hypothesis that task complexity mod-
erates the relative performance of group-vs.-individual problem
solving. To this end, we address the following question: how
does the balance between process losses and synergistic gains in
interacting groups depend on task complexity?

Our experiment proceeded in two phases. In phase 1, 1,200
participants individually completed five room assignment tasks:
three very low– and two moderate-complexity tasks (SI Appendix,
Table S1) as well as a standard Reading the Mind in the Eyes
test (SI Appendix, section S1.2 and Fig. S3), which is commonly
used as a measure of social perceptiveness and was used by
several recent studies relating social perceptiveness to group
performance (18, 29–32).

After the completion of phase 1, we scored all partici-
pants on skill level and social perceptiveness so that we could
assign them to experimental blocks in phase 2 (SI Appendix,
section 1.4 and Fig. S4). By accounting for these features
in our block-randomization procedure in phase 2, we could
ensure that various levels of skill and social perceptiveness
(and combinations thereof) were balanced across the group
and individual work arrangements. The main purpose of the
block-randomization scheme was to oversample statistically less
frequent combinations (e.g., all group members having high skills
or high social perceptiveness), thereby increasing the statistical
power of our experiments. We note that our focus here is on
the comparison between interacting and nominal groups, not
on compositional differences between interacting groups; thus,
our analysis of the effects of skill level and social perceptive-
ness on performance will be published elsewhere (as per our
preregistration).

The same 1,200 participants were invited to participate in
phase 2, and the first 828 participants who showed up and passed
the attention checks (as per our preregistration; see SI Appendix,
Table S2, for sample sizes) were assigned to a second sequence
of five room assignment tasks (task sequence was randomized),
also of varying complexity (very low, low, moderate, high, and
very high; SI Appendix, Table S3 and Fig. S5). All tasks timed out
at 10 min in phase 2, regardless of complexity. Based on each par-
ticipant’s skill and social perceptiveness as measured in phase 1,
we first assigned each individual into blocks (e.g., high skill, high
social perceptiveness; mixed skill, high social perceptiveness;
etc.). Next, within each block, participants were randomized to
one of two conditions: an interacting group condition (N =591
participants, forming 197 groups of size 3; data for 1 group are
incomplete, leading to the number of valid interacting groups
being 196), in which group members solved the problem col-
lectively and could communicate with each other via text-based
chat; and an independent individual condition (N =237 partic-
ipants; data from 3 individuals are incomplete, leading to the
number of valid independent individuals being 234), in which
each participant worked on their assigned task alone. All results
presented herein are from phase 2 of the experiment.

Performance Evaluation. In phase 2, we used three metrics to
capture performance in a room assignment task instance: (1)
normalized score, defined as the actual score obtained in a task
instance divided by the maximum possible score for that task;
(2) duration (or time to completion), defined as the time elapsed
from the start of the task until a solution was submitted (or until
the task times out at 10 min); and finally, (3) efficiency, defined
as the normalized score divided by the duration.

All three metrics are natural indicators of performance which
one may wish to optimize under some circumstances. In the
absence of time constraints, for example, normalized score is
an obvious measure of solution quality. By contrast, duration is
appropriate when the problem-solving time is more important
than quality (e.g., quickly come up with a reasonably good plan

for resource allocation in a disaster response), and efficiency is
appropriate when both quality and speed are important (e.g., in
product development).

Following prior work (12, 33–37), we evaluate group perfor-
mance in comparison with so-called nominal groups, defined as
a similarly sized collection of autonomous individuals. Nomi-
nal groups provide a useful benchmark for interacting groups
because they account for differential resource availability
between groups and individuals (12); that is, they adjust for the
amount of intellectual resources that groups could bring to bear
(i.e., labor hours) and the mathematical probability that at least
one member could have achieved the same performance. Thus,
interacting group performance over and above that of a nomi-
nal group can be attributed to the group interaction, not greater
resources.

In general, comparisons between interacting groups and equiv-
alently sized nominal groups have found mixed evidence for syn-
ergistic effects (12): while interacting groups often outperform
the average member of a nominal group (weak synergy), they
rarely outperform the best member (strong synergy). Reflecting
this distinction, we compare our interacting groups with four per-
formance benchmarks, each corresponding to a distinct nominal
group constructed by drawing three individuals randomly and
without replacement from the same block. The first benchmark
corresponds to the performance score for a randomly chosen
member of the nominal group (equivalent to an average indi-
vidual), while the remaining three correspond to the individual
with the best phase 1 performance on each of the three metrics
defined above (i.e., highest score, lowest duration, and highest
efficiency). Nominal groups, therefore, simulate a situation in
which a manager assigns the work to either a random individual,
the highest-scoring individual, the fastest individual, or the most
efficient individual, as judged by past performance (i.e., phase 1
scores, durations, and efficiencies).

Results
Performance as a Function of Task Complexity. Fig. 2 shows how
performance varied as a function of task complexity. Across
all conditions, higher task complexity resulted in lower nor-
malized scores (Fig. 2A), longer duration (Fig. 2B), and hence
lower efficiency (Fig. 2C). These performance trends also hold
when measured separately for interacting and nominal groups
(SI Appendix, section S2 and Fig. S7). On average, individuals
and groups spent roughly three times as long on the most com-
plex task than on the least complex task, but obtained normalized
scores that were roughly 10 percentage points lower. Given
that normalized scores were almost always in excess of 80, this
last difference represents roughly 50% of the effective range—
a large effect. The clear monotonic dependency of all three
performance measures on complexity is important for two rea-
sons. First, it validates our design, demonstrating that increases
in complexity as captured by changes in the task parameters
N , M, and Q translate in a straightforward way to complexity
experienced by our participants. Second, it offers considerable
leverage to test our prediction that the relative performance
of interacting groups versus nominal groups depends upon task
complexity.

Evidence for Group Synergy. Fig. 3 compares overall standardized
group performance (transformed to z scores within each task
complexity level) with the four nominal group definitions: ran-
dom individual, highest-scoring individual, fastest individual, and
most efficient individual.
Performance as solution quality. For all levels of task complex-
ity, Fig. 3A shows that groups score higher than the random
selected, fastest, and most efficient members of equivalently
sized nominal groups (P = 0.013, 95% CI [0.026, 0.225]; P <
0.001, 95% CI [0.184, 0.410]; P < 0.001, 95% CI [0.155, 0.378];
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Fig. 2. Varying the room assignment task complexity. Increasing the task complexity (A) reduces the normalized score, (B) increases the time required to
complete the task, and (C) reduces efficiency. Data are combined across both individual and group conditions across all six blocks. Error bars indicate the
95% confidence intervals (some are not large enough to display). Groups and individuals scored at least 80% of the maximum score in over 85% of tasks;
hence, the effective range for the normalized score (i.e., the y axis of A) is between 80 and 100%. The minimum time required for a solution to be submitted
is 1 min, and the maximum is 10 min; hence, the effective range for the duration (i.e., the y axis of B) is between 1 and 10 min. The difference in experienced
difficulty between very low and very high complexity is very large: the average normalized score dropped by about 50% of the effective range of scores
(from roughly 95 to 85% on an effective scale of 80 to 100), and the average time taken increased by 200% (from 2 to 6 min).

respectively) but lower than the highest-scoring member (P =
0.047, 95% CI [−0.159, −0.001]; see SI Appendix, Tables S4–S7,
for regression tables). This result is consistent with longstanding
findings (33–37) that interacting groups often outperform nom-
inal groups in terms of solution quality when the standard is set
by an average-member criterion (weak synergy), but not when it
is set by a best-member criterion (strong synergy).
Performance as speed. Fig. 3B shows that interacting groups
complete more complex tasks—but not simpler ones—faster
than both the random and highest-scoring members of equiva-
lently sized nominal groups. Moreover, interacting groups are
as fast as the fastest and most efficient members at the highest
task complexity (see SI Appendix, Tables S8–S10, for regres-
sion tables). These suggest that indeed, for tasks with many
components (students and rooms) and dense interdependen-
cies (many constraints), the benefits of distributing work to
a group might outweigh the process losses associated with
interacting groups, which is consistent with findings in prior
work (36).
Performance as efficiency. Finally, Fig. 3C shows that for the
most complex tasks the gains in speed exceed the deficits in
the score. This results in a striking interaction between task
complexity and work arrangement: while interacting groups are
considerably less efficient than selected members of nominal
groups on simple tasks, their relative efficiency increases with
task complexity until they surpass the highest-scoring, fastest,
and most efficient members at the highest complexity (see SI
Appendix, Tables S11–S13, for regression tables). This result
is reminiscent of group decision-making among social insects
wherein a recent study has found that ant colonies outperform
individual ants when the discrimination task is difficult but not
when it is easy (38).

Unpacking Group Synergy. The finding that interacting groups
are more efficient than the best selected members of equiva-
lently sized nominal groups—by any of our four definitions—
when the task is complex, but not when the task is simple,
suggests that the balance between process losses and syner-
gistic gains does depend on task complexity. To better under-
stand this dependency, and noting that the variation in effi-
ciency apparent in (Fig. 2C) is more dependent on variation

in task duration (which varies between 2 and 6 min on aver-
age, Fig. 2B) than on variation in the score achieved (which
varies between 95% and 85% on average, Fig. 2A), we next
present an exploratory analysis of the time spent in each stage
of solving the task. This analysis is made possible by the highly
granular nature of our data. Because every action taken by
every participant is timestamped, we can partition the overall
solution time into very precisely measured segments that cor-
respond to distinct stages of the problem-solving process. For
clarity, we define four key segments, illustrated schematically
in Fig. 4A:
Time to first solution, T1. The time from the beginning of the
task to generating the first solution can be viewed as time spent
in formulating a strategy to approach the task.
Time to best solution, T2. The best solution is not necessarily
the one submitted because the task instance only ends once
a group/individual decides to submit a solution, and groups/
individuals may generate solutions after their best solution
without returning to it.
Time from best to final solution, T3. The time spent between
generating the best and final solutions, which can be viewed as
“excess exploration,” decreases efficiency as it leads to lower (or
equal) solution quality but greater total task duration.
Time from the final solution to submission, T4. The time spent
between generating the final solution and deciding to submit
it, which can be viewed as “commitment time,” can be another
source of inefficiency as it leads to equal solution quality but
increases the total task duration.

Fig. 4 shows two sets of comparisons between interacting
and nominal groups for each of these four segments. Fig. 4 B,
D, F, and H show the raw durations for T1, T2, T3, and T4,
respectively, for interacting groups (green) along with the four
previously defined nominal group benchmarks (random mem-
ber, highest-scoring member, fastest member, and most efficient
member), while Fig. 4 C, E, G, and I show the same results as
standardized durations. We make five main observations about
Fig. 4.

First, we observe that (on average) interacting groups spend
less time in T1 (time to first solution, Fig. 4 B and C) than the
members of nominal groups regardless of task complexity (P <
0.001 for all; and SI Appendix, Table S14). We speculate that
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Task complexity

Highest-scoring 
individual

Interacting 
groups

Random 
individual

Most efficient 
individual

Fastest 
individual

A

B

C

Fig. 3. Comparing performance in terms of score (A), speed (B), and efficiency (C) across interacting groups and nominal groups. Data are combined across
all six blocks and standardized (i.e., transformed to z scores) within each task complexity level (differences are relative within the complexity level and
should not be compared across complexity levels). Error bars indicate the 95% confidence intervals. We have repeated the analyses presented in this figure
for each block, with qualitatively similar results (SI Appendix, section S3 and Figs. S8–S10).

this observation may be related to arguments from recent stud-
ies that group membership reduces the sense of responsibility
and regret that members may face under the same circumstances
individually. If correct, a reduced emotional barrier to action
may be an underlying mechanism driving group members to act
earlier (39).

Second, we observe a noticeable effect of task complexity on
T2 (time to best solution, Fig. 4 D and E): interacting groups
are slower to reach their best-found solution than the fastest and
most efficient members of nominal groups for the least complex
task but faster for the most complex task (P < 0.001, 95% CIs
[0.119, 0.385] and [0.109, 0.371], respectively, at the lowest com-
plexity, and P < 0.001, 95% CIs [−0.351, −0.085] and [−0.370,
−0.108], respectively, at the highest complexity; see SI Appendix
Tables S17–S18 for regression tables). Importantly, we note that
most of the task duration is spent in this segment, suggesting that
speed to best solution is the main contributor to group synergy.
One potential explanation for why interacting groups are faster
at finding the best solution at high complexity is that interacting
groups realize some benefits of division of labor (see SI Appendix,

section S4 and Fig. S11, for suggestive evidence). Another possi-
ble explanation, for which we see some anecdotal evidence in the
chat logs (SI Appendix, Fig. S11), is that interacting groups are
more willing to satisfice by accepting a currently available solu-
tion as satisfactory (40). Yet another could be that they benefit
from turn-taking, wherein one person is primarily active, while
the others are considering their next move(s). Unfortunately,
the current experiment design does not allow us to discrimi-
nate between these alternative explanations, hence they remain
speculative.

Third, we observe that regardless of complexity, interacting
groups spend more time in T3 (excess exploration, Fig. 4 F and
G) segment relative to the members of nominal groups; as with
T1, the difference is consistent across levels of complexity (see
SI Appendix, and Tables S19–S20 for regression tables). Fourth,
interacting groups also spend more time to commit to a solu-
tion (T4) than the selected members of nominal groups, once
again regardless of complexity (Fig. 4 H and I and SI Appendix,
Table S14). We speculate that the fact that interacting groups
can communicate via chat (and lack an assigned leader) may add
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Fig. 4. Task completion milestones. (A) The four milestones in the problem-solving process: (i) the first intermediate solution is generated, (ii) the best
intermediate solution is generated, (iii) the final solution is generated, and (iv) the final solution is submitted. (B, D, F, and H) The time spent (in minutes)
by groups and individuals (whether random, highest-scoring, fastest, or most efficient) in each time segment. (C, E, G, and I) The standardized time spent
(transformed to z scores; i.e., showing the relative difference within complexity level) in each time segment. Error bars indicate the 95% confidence intervals.

pressure to groups to ensure that their decisions are made col-
lectively (i.e., reaching consensus), which could contribute to the
observed effect.

Fifth, we observe that the mean total task duration ranges from
∼ 2 min at very low complexity to ∼ 6 min at very high complexity
(out of a maximum of 10 min), meaning that participants gener-
ally submit the solution and end the task instance before running
out of time. This observation is relevant to our analysis in that
our performance comparisons of interacting groups to that of
selected members of nominal groups is unaffected by the time
constraint.

Summarizing, Fig. 4 reveals two types of process losses (i.e.,
the extra time spent in excess exploration and achieving con-
sensus) and two types of synergies (i.e., faster time to first
solution and faster time to best solution for complex tasks).
Interestingly, whereas the synergies—specifically in the time to
best solution—depend on task complexity, the process losses
do not. In other words, our findings suggest that being in
an interacting group has fixed costs that are relatively con-
sistent across task complexity levels but a benefit that varies
across complexity levels (i.e., less time spent to find the best
solution).

To further clarify this finding, we next aggregate the costs and
benefits to quantify the value of performing the task in an inter-
acting group across complexity levels. In particular, we measure
each cost and benefit as the absolute difference, in terms of time
spent, between interacting groups and the random (i.e., average)
member of nominal groups in each time segment:

Total benefit=
(
T nominal

1 −T
interacting
1

)
+
(
T nominal

2 −T
interacting
2

)
Total cost=

(
T

interacting
3 −T nominal

3

)
+
(
T

interacting
4 −T nominal

4

)
.

Fig. 5 shows that the total cost associated with interacting
group inefficiencies (i.e., excess exploration, reaching consen-
sus) exceeds the synergistic benefits (i.e., speed gains in finding
the best solution) when solving low-complexity tasks but not
high-complexity ones. This explains our finding that groups are
more efficient than the highest-scoring, fastest, and most efficient
members of equivalently sized nominal groups when the task is
complex but that this relationship is reversed when the task is
simple. We find similar results for the highest-scoring member
comparison (SI Appendix, section S5 and Fig. S12).

Exploring Differences in Problem-Solving Approaches. Recapping
our main results, interacting groups are more efficient than
even the most efficient member of nominal groups for high-
complexity problems; hence, we conclude that they display strong
synergy for efficiency (Fig. 3C). Regarding speed, interacting
groups are faster than the average (randomly chosen) mem-
ber and as fast as the fastest member of equivalently sized
nominal groups (Fig. 3B), thereby displaying only weak syn-
ergy. For solution quality, interacting groups display even weaker
synergy as they score higher than the average member but
not quite as well as the highest-scoring member of nominal
groups (Fig. 3A).
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The Cost-Benefit of Interacting Groups

Total cost

Cost in “time to final solution”
(excess exploration), T3

(commitment time), 
Cost in “time to submission”

T4

Benefit in “ time to first solution,” T1

Benefit in
“time to best solution,” T2

Total benefit

Very low Low Moderate High Very high

Task complexity

setuni
M

Fig. 5. The cost-benefit of interacting groups. The figure illustrates the
absolute difference in terms of average time spent between interacting
groups and an average individual nominal group in each time segment.

To further investigate these results, we examined the num-
ber and pace of generated intermediate solutions, where an
intermediate solution is defined as an assignment of students
to rooms (i.e., each action taken by a participant generates
an intermediate solution). As shown in Fig. 6 A and B, we
observe that groups not only generated more intermediate solu-
tions than the random, highest-scoring, fastest, and most effi-
cient members of equivalently sized nominal groups (P < 0.001
for all, 95% CIs [0.503, 0.697], [0.586, 0.738], [0.513, 0.736],
and [0.544, 0.745] respectively; SI Appendix, Table S23); they
did so at a higher rate as well (P < 0.001 for all, 95% CIs

[0.424, 0.662], [0.615, 0.815], [0.104, 0.372], and [0.127, 0.392],
respectively; SI Appendix, Table S23). Interacting groups also
exhibited a wider solution radius, defined as the maximum
edit distance (i.e., the number of differences in student/room
assignments) between the first complete solution (i.e., all stu-
dents assigned to rooms but conflicts may be unresolved) and
all subsequent complete solutions, suggesting they explored the
solution space more broadly (Fig. 6C; P < 0.001 for all, 95% CIs
[0.558, 0.772], [0.582, 0.802], [0.597, 0.797], and [0.600, 0.800]
respectively; SI Appendix, Table S23). We also confirmed this
qualitative conclusion using two other measures of exploration:
the percentage of solutions within an edit distance of two of
the final solution and the percentage of intermediate solu-
tions that involved a constraint violation (SI Appendix, Figs. S13
and S14).

In light of these observations, it is all the more surprising that
interacting groups did not find higher-quality solutions than the
highest-scoring member of nominal groups (Fig. 6D; P =0.268;
SI Appendix, Table S23). In part the gap can be explained by
interacting groups also failing to submit their best-found solu-
tion at a higher rate than the highest-scoring individual: across all
complexities, the highest-scoring individual fails to submit their
best-found solution ∼ 6% of the time, whereas interacting groups
fail to submit their best solutions ∼ 14% of the time (P < 0.001;
difference in proportions). As a result, interacting groups’ sub-
mitted solutions were worse relative to highest-scoring individual
members than if everyone had submitted their best-found solu-
tion (compare Fig. 3A with Fig. 6D), although even then some
gap remains.

What might account for the combination of strong synergy
in efficiency and only weak synergy for solution quality and
speed? Prior research that conceptualizes problem solving as an
adaptive search on a rugged performance landscape (14, 27),
wherein each point on the landscape represents one solution
to the room assignment and the height of the point represents

Highest-scoring 
individual

Interacting 
groups

Random 
individual

Most efficient 
individual

Fastest 
individual

A

C

B

D

Fig. 6. Mechanistic differences in problem-solving approaches between interacting groups and individuals. Interacting groups generate (A) more solutions,
(B) at a faster rate, and (C) explore the solution space more broadly. (D) However, the quality of the best-found solution (whether submitted or not) is not
better than the solution found by the highest-scoring-individual nominal groups. Error bars indicate the 95% confidence intervals.
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the performance of that assignment, provides several, possibly
interrelated, explanations. One potential explanation is that the
highest-scoring individuals have better representations (lower-
dimensional approximations) of the true performance landscape,
which allows them to evaluate solutions (and solution trajecto-
ries) offline without testing them through experimentation (41,
42). Better representations can lead to more accurate offline
evaluations and more effective search efforts (26, 43, 44), char-
acterized by fewer intermediate solutions and higher solution
quality. Alternatively, groups of problem solvers might have con-
flicting interests (e.g., maximizing score vs. minimizing duration)
and, hence, different visions of the right course of action (45). If
true, groups might benefit from central coordination by assign-
ing a group leader (45) or from process-related interventions like
enforcing intermittent breaks in interaction (46, 47). Yet another
possibility is that when time is limited, search strategies that allow
for quick wins (i.e., steep performance improvements early on)
and reduce the amount of exploration might appear superior
(26). Therefore, while the local path-deepening search strat-
egy (e.g., hill climbing) adopted by the highest-scoring members
of equivalently sized nominal groups might provide short-run
performance benefits, the interacting groups’ strategy of broad-
ening the search domain might be more advantageous in the
long run (48, 49).

Discussion
For many tasks of interest, managers can decide whether to
assign a task to an interacting group or to a comparable number
of individuals working independently (12). For settings such as
these, our results offer several insights. First, decisions about how
to allocate work—to interacting groups or to nominal groups—
should depend on the complexity of the task at hand and the
way performance is evaluated. For example, if a manager wanted
to find a workable solution to a CSOP in the least amount of
time, the recommendation would be to ask a group to solve
the problem when the problem is complex but to ask indepen-
dent problem solvers when it is simple. It is noteworthy that
the duration and efficiency results presented here may actually
underestimate how this would work in practice. For instance,
if the work was organized in nominal groups, that arrangement
would still produce multiple different solutions for some man-
ager to decide between. Although our operationalization of nom-
inal groups simulated a situation in which the manager makes
the decision instantaneously, there are circumstances where a
manager might want to consider the merits of the different solu-
tions, and this would take a nonzero amount of time. This is
not the case with interacting groups, where the decision process
is already included in the elapsed time of the problem-solving
exercise.

Second, our findings also suggest that a possible explanation
for why group process losses have figured more prominently in
research findings than synergistic gains (12) is that laboratory
studies of group performance generally rely on very simple tasks.
Indeed, the clearest laboratory evidence to date for superior
group performance, although rare, comes from groups working
on relatively complex tasks (13, 46, 50, 51); however, the fact
that task complexity was not varied systematically within a sin-
gle study represents a major source of uncontrolled variation in
past research (17, 36).

Third, our analysis of how interacting groups and indepen-
dent individuals differ in the time they spend during various
parts of the problem-solving process offers insight into how
group processes could be improved. For example, our finding
that groups spend more time in deciding that a task has been
completed (i.e., achieving consensus) suggests that assigning a
group leader with the ability to unilaterally make that decision,
as an individual does, should reduce this source of delay, thereby
improving group performance. Moreover, our finding that inter-

acting groups are less likely to submit their best-found solution
suggests that storing their best solutions so that they can be
reloaded and potentially modified in subsequent steps (a ubiq-
uitous feature of personal productivity software) should also
improve their performance (46).

Fourth, our analysis of the solution dynamics of groups vs.
individuals provokes additional puzzles for future work. In par-
ticular, if groups generate more solutions faster and more effi-
ciently over a wider range of the solution space than even
the highest-scoring individuals, why do they not find better
solutions?

Finally, we conclude that the science of group performance
would benefit from a deeper, more systematic appreciation of
the similarities and differences among the tasks that groups
are asked to perform, both in the laboratory and in field set-
tings. There is a need for a comprehensive, empirically grounded
theory of group tasks (12). A research program that system-
atically varied task types along with allowed group processes
and other contextual factors would advance the basic sci-
ence of group problem solving while also addressing practical
applications.

Materials and Methods
The study was reviewed by the Microsoft Research Ethics Advisory Board
and approved by the Microsoft Research Institutional Review Board (MSR
IRB; Approval 0000019). All participants provided explicit consent to par-
ticipate in this study, and the MSR IRB approved the consent procedure.
Our experimental design, sample size, and analyses comparing perfor-
mance across interacting groups and nominal groups were preregistered
before the collection of the data (AsPredicted 13123). All other analyses are
exploratory.

Algorithmic Solver. We modeled each room assignment problem as a mixed-
integer programming problem and generated the run time for computers
to solve each problem using the IBM ILOG CPLEX Optimization Studio soft-
ware, which is a high-performance mathematical programming solver for
linear programming, mixed-integer programming, and quadratic program-
ming. The software ran on a laptop with an Intel Core i5 microprocessor
operating at a speed of 2.6 GHz. We ran the software using the default
configuration of parameters. The unit of the run time in the task file
is “ticks,” which is CPLEX’s unit to measure the amount of work done.
The correspondence of ticks to clock time varies across platforms (includ-
ing hardware, software, machine load, etc.), but given a mixed-integer
programming problem and the parameter settings, the ticks needed to
solve a problem are deterministic. In this sense, the test–retest reliability
of the algorithmic solver is 1. See SI Appendix, section 1.4.2, for additional
detail.

Statistical Analysis. Because each interacting group (or individual) com-
pleted the five room assignment tasks, we conducted tests for differences
across conditions at the task level. For interaction effects, we modeled the
data using a generalized linear mixed model for each outcome (e.g., score,
duration, and efficiency) with a random effect for the group or individual
identifier. These models account for the nested structure of the data. All
statistical tests were two-tailed (as per our preregistration). Details of the
statistical tests are in SI Appendix, section S7.

Standardized Coefficients. To enable meaningful comparisons of effect
sizes across tasks of different complexity levels, we standardize various
metrics of performance (e.g., score, duration, efficiency, and number of
solutions) within each complexity level. For example, the standardized
value of measurement X, measured for task instance i of complexity c, is
defined as

Xi,standardized =
Xi −µX,c

σX,c
,

where µX,c is defined as the mean of X across all instances of the task at
complexity c (for interacting and nominal groups), and σX,c is the SD.

Data Availability. Replication data and code are available at the Harvard
Dataverse, https://doi.org/10.7910/DVN/RP2OCY (52). The experiment was
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developed using the Empirica platform (53). The source code for the
room assignment task can be found at https://github.com/amaatouq/room-
assignment-csop, and the source code for the Reading the Mind in the Eyes
test can be found at https://github.com/amaatouq/rme-test.
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